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Abstract—Inferring appropriate information from large datasets has be-
come important. In particular, identifying relationships among variables
in these datasets has far-reaching impacts. In this paper, we introduce
the uniform information coefficient (UIC), which measures the amount
of dependence between two multidimensional variables and is able
to detect both linear and non-linear associations. Our proposed UIC
is inspired by the maximal information coefficient (MIC) [1]; however,
the MIC was originally designed to measure dependence between two
one-dimensional variables. Unlike the MIC calculation that depends on
the type of association between two variables, we show that the UIC
calculation is less computationally expensive and more robust to the
type of association between two variables. The UIC achieves this by
replacing the dynamic programming step in the MIC calculation with a
simpler technique based on the uniform partitioning of the data grid.
This computational efficiency comes at the cost of not maximizing
the information coefficient as done by the MIC algorithm. We present
theoretical guarantees for the performance of the UIC and a variety of
experiments to demonstrate its quality in detecting associations.

1 INTRODUCTION

ONE of the challenging issues for data scientists is to
infer useful information from large datasets contain-

ing hundreds of variables which some of them may have
interesting but unexplored relationships with each other.
This is due to the examples of massive datasets in different
areas such as: social networks, astronomy, genomics, medi-
cal records, and political science. Hence, it is an important
problem to design algorithms that are able to discover
associations between different variables in a large dataset.

Measuring the amount of dependence between variables
has been extensively studied in the literature and several
methods have been proposed for it. Classical works are but
not limited to the Pearson correlation coefficient (PCC) 1,
correlation ratio [2]–[4], maximal correlation [5], and Spear-
man correlation coefficient [6].

Mutual Information [7] is a measure that we can use
for the quantification of dependency between two variables
and has been a focus of several recent works [1], [8]. There
are different methods (e.g., kernel density estimation) for
estimating mutual information [9]–[19]. A recent line of
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1. ρX,Y =
cov(X,Y )
σXσY

where cov(X,Y ) is the covariance between
X and Y and σX and σY are the standard deviation of X and Y ,
respectively.

work for computationally efficient estimation of mutual
information is based on the k-nearest neighbors graph or
minimal spanning trees of the graph of data points. We refer
interested readers to [20]–[22] and references therein.

The Maximal Information Coefficient (MIC) [1] is recently
proposed for quantifying dependency between two one-
dimensional random variables. It is mainly based on calcu-
lating the largest possible mutual information between the
two variables. The probability distribution corresponding to
each variable comes from a two-dimensional grid that the
MIC algorithm imposes on the dataset. The MIC bins the
dataset in a two-dimensional grid by equipartitioning one
axis and using dynamic programming to partition the other
axis in order to maximize the mutual information between
the two variables. It uses dynamic programming [23] as an
optimization method to break the problem of finding the
optimal data grid into a sequence of simpler problems. It
has two main properties that make it superior in comparison
with the aforementioned measures. First, it has generality
meaning that if the sample size is large enough, it is able
to detect different kinds of associations rather than specific
types. Second, it is an equitable measure meaning that it gives
similar scores to equally noisy associations no matter what
type the association is.

However, the MIC has three major problems that mo-
tivated this work. First, MIC’s computational cost grows
rapidly as a function of the dataset size. Second, compared
to other measures of dependency, the MIC has shown
lower statistical power in detecting associations for small
size datasets. Third, using MIC for detecting associations
between multidimensional variables is computationally ex-
pensive. Since MIC’s computational cost may become in-
feasible, Reshef et al. in [1] have applied a heuristic so
as not to compute the mutual information for all possible
grids. This heuristic application may result in finding a local
maximum of mutual information. Authors in [8] introduced
the ChiMIC as a new method to compute the MIC values
while resolving the aforementioned drawbacks. However,
their approach is also limited to one-dimensional variables
and as we show later is computationally expensive as well.

In this paper, we develop a new measure of dependency
inspired by the MIC. Our measure is based on replacing the
dynamic programming application used in the computation
of the MIC with uniformly binning the data grid. The trade-
off here is that our proposed method is time efficient at the
cost of not maximizing the mutual information between
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the two variables. However, with theoretical guarantees,
we show that our proposed method is able to detect both
functional and non-functional associations between differ-
ent variables, similar to the MIC while more time efficiently.
In addition and from the statistical power point of view,
we show through a series of experiments that our proposed
measure is more powerful than the MIC and gives signifi-
cantly fewer false positives in detecting associations.

In a conference version of this manuscript [24], we intro-
duced our efficient algorithm for two one-dimensional vari-
ables. The current manuscript generalizes our algorithm for
detecting associations between two multidimensional vari-
ables x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , yq) ∈ Rq . We
should note that detecting associations between two multi-
dimensional variables is also possible by using the original
MIC algorithm. Let x = (x1, . . . , xm) and y = (y1, . . . , yq)
be the two variables that we are interested in detecting
associations between them. We can use MIC to check if
there is any association between xi (1 ≤ i ≤ m) and yj
(1 ≤ j ≤ q). While this method needs mq times of running
the original MIC algorithm to measure the dependency,
our algorithm finds associations with a one-time uniformly
partitioning the multidimensional data grid. Therefore, our
algorithm is significantly computationally more efficient.

While in this paper we assume that the dataset is fixed,
there are important scenarios that we have a dynamic
environment (e.g., in recommendation systems) and are
interested to detect associations between different variables.
One prominent example is the class of networked ban-
dit problems where the goal is to recommend items to
users not only based on their individual activity, but also
based on the underlying network of relationships between
different users. Recent works such as [25] and references
therein have explored the idea of graph clustering for this
class of problems. Another example is [26] where authors
have introduced context aware clustering of bandits for
collaborative recommendation tasks. Similar to our work in
using a k-nearest neighbors style algorithm for detecting
noisy associations, [26] estimates user neighborhoods for
collaborative recommendation tasks. Finally, authors in [27]
have introduced the idea of using data smashing principles
to quantify the association between two data streams.

The rest of this paper is organized as follows. In Section
2, we review the MIC and the algorithm used to compute
it from [1]. In Section 3, we introduce our new measure of
dependency that is a modification to the MIC. We present
experimental results in Section 4. Finally, Section 5 includes
the conclusions of the paper and we have included the
proofs of our main results in the Appendix.

2 BACKGROUND

2.1 MIC Definition and Properties
For any finite dataset D which contains ordered pairs of
two one-dimensional random variables, one can partition
the first element, i.e., x-value of these pairs into `x bins and
similarly partition the second element or y-value of these
pairs into `y bins. As a result of this partitioning, we will
have an `x-by-`y grid G. Each cell of this grid may or may
not contain some sample points from the set D. This grid
induces a probability distribution on the cells of G, where
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Fig. 1. Partitioning of D into `x columns and `y rows. Dij denotes the
set of sample points located in the i-th row and the j-th column. Figure
is adopted from the conference version of this manuscript [24].

the corresponding probability of each cell is equal to the
portion of sample points located in that cell. That is,

pij =
|Dij |
|D|

, (1)

where pij denotes the probability corresponding to the cell
located at the ith row and the jth column and |Dij | denotes
the number of sample points falling into the i-th row and
the j-th column. See Figure 1 for a graphical view of the
grid G. It is obvious that for each (`x, `y), we will have a
grid that induces a new probability distribution and hence
results in a different mutual information between the two
variables.

Let I∗D|G(P ;Q) = maxG ID|G(P ;Q) be the largest pos-
sible mutual information achievable by an `x-by-`y grid G
on a set D of sample points. P and Q are the partitions
of x-axis and y-axis of grid G, respectively. In order to
have a fair comparison among different grids, the computed
values of mutual information should be normalized. Since
I(P ;Q) = H(Q)−H(Q|P ) = H(P )−H(P |Q), we divide
I∗D|G(P ;Q) by log(min(`x, `y)). Therefore, we have

0 ≤
I∗D|G(P ;Q)

log(min(`x, `y))
≤ 1. (2)

This inequality motivates the definition of the MIC as a mea-
sure of dependency between two variables. For a dataset D
containing n samples of two one-dimensional variables,

MIC(D) = max
`x`y<B(n)

I∗D|G(P ;Q)

log(min(`x, `y))
, (3)

where B(n) = n0.6 or more generally ω(1) ≤ B(n) ≤
O(n1−ε) [1] where ω(.) and O(.) are standard time com-
plexity notations. According to this definition, the MIC has
the following properties:

• 0 ≤ MIC(D) ≤ 1.
• MIC(x, y) = MIC(y, x).
• MIC is invariant under any order-preserving trans-

formation applied to the dataset D.
• MIC is not invariant under the rotation of coordinate

axes, e.g., if y = x, then MIC(D) = 1. However, after
a 45◦ clockwise rotation of the coordinate axes, we
have y = 0 and hence MIC(D) = 0.
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Clumps

Fig. 2. OptimizeXAxis [1] considers only consecutive points falling into
the same row and draw partitions between them. The set of consecutive
points falling into the same row is called a clump.

2.2 MIC Calculation Algorithm

Here we only review the OptimizeXAxis algorithm which is
used in the computation of the largest mutual information
achievable by an `x-by-`y grid and refer the interested
readers to [1] for the full description of the MIC algorithm.
Any `x-by-`y grid imposes two sets of partitions on x-values
(columns of grid) and y-values (rows of grid). We indicate
columns of the grid by 〈c1, c2, . . . , c`x〉 where ci denotes the
endpoint (largest x-value) of the i-th column.

Since I(P,Q) is upper-bounded by H(P ) and H(Q), in
order to maximize it, one can equipartition either the x-
axis or y-axis, i.e., impose a discrete uniform distribution
on either Q or P . Without loss of generality, we consider
the version of the algorithm that equipartitions the y-axis.
However, it is obvious that we should check both of the
cases (equipartitioning either the x-axis or y-axis) separately
for each `x-by-`y grid and choose the maximum resulting
mutual information.

Let H(P ) denote the entropy of distribution imposed
by m sample points (m ≤ |D| = n) on the partition of
x-axis. Similarly, let H(Q) denote the entropy of distribu-
tion imposed by m sample points (m ≤ |D| = n) on
the partition of y-axis. Since we have assumed that the
y-axis is equipartitioned, H(Q) is constant and equal to
log(|Q|). Finally, let H(P,Q) denote the entropy of distri-
bution imposed by m sample points (m < |D| = n) on
the cells of grid G which has x-axis partition P and y-
axis partition Q. Since I(P ;Q) = H(Q) −H(Q|P ) and we
have already maximized H(Q) by equipartitioning the y-
axis, to achieve the highest mutual information, we have
to minimize the H(Q|P ). An alternative formula for the
mutual information is I(P ;Q) = H(Q) +H(P )−H(P,Q).
Since H(Q) is constant, the OptimizeXAxis only needs to
maximize H(P ) − H(P,Q). The following theorem [1] is
the key to solve this problem.

Theorem 2.1. For a dataset D of size n and a fixed row
partition Q, and for every m, l ∈ N, if we define F (m, l) =
maxD(1:m),|P |=l{H(P ) − H(P,Q)} then for l > 1 and
1 < m ≤ n we would have the following recursive equation

F (m, l) = max
1≤i<m

{ i
m
F (i, l − 1)− m− i

m
H(〈i,m〉, Q)}. (4)

Proof. See proposition 3.2. in the supplementary file of [1].

The OptimizeXAxis algorithm (Alg. 2 in the supplemen-
tary material of [1]) uses dynamic programming technique
motivated by Theorem 2.1 to minimize the H(Q|P ). It
ensures F (n, l) that is the desired partition of dataset D
(which has n sample points) having l columns imposing
partition P over x-axis. In order to minimize the H(Q|P ),
OptimizeXAxis considers only consecutive points falling into
the same row and draw partitions between them. The set of
consecutive points falling into the same row is called clump.
See Figure 2 for a graphical view of clump.

There are three major drawbacks in OptimizeXAxis Al-
gorithm if one wants to use it for detecting associations
between two variables. First, it is computationally expen-
sive. If there exists k clumps in the given partition of an `x-
by-`y grid, the runtime of this algorithm would be O(k2).
If there is a functional association between two variables,
then the number of clumps in the corresponding grid is
pretty small. However, for noisy or random datasets it is
easy to imagine that the number of clumps is very large and
hence, the computational complexity of the OptimizeXAxis
Algorithm would be large.

The second drawback of OptimizeXAxis Algorithm is
that compared to other statistical measures and for at least
small size datasets, it gives a higher false positive rate
in detecting associations. In other words, it shows lower
statistical power.

The third drawback is that OptimizeXAxis Algorithm is
exclusively designed for detecting associations between two
one-dimensional variables. If we want to use OptimizeXAxis
Algorithm for association detection in a multidimensional
setting, we need to break the problem into one-dimensional
setting and check each pair of entries from the two variables
separately as we discussed in the introduction. In other
words, if the first variable is m-dimensional and the second
variable is q-dimensional, we need to run OptimizeXAxis
Algorithm for mq times that could be computationally
expensive. We will illustrate this with examples in Section
4.

3 ALGORITHM

In the following, we introduce the uniform information
coefficient (UIC) as an efficient alternative to the MIC that
does not have any of the aforementioned drawbacks. We
first describe our algorithm in the noiseless setting and then
show how one can use a k-nearest neighbor style method to
reduce the noise and detect associations more effectively in
the noisy setting.

In order to emphasize on the multidimensionality of data
points, in the rest of this paper we denote our dataset by
D = {(xi,yi)}ni=1 where x = (x(1), x(2), . . . , x(m)) and y =
(y(1), y(2), . . . , y(q)). Here n shows the number of samples
and the superscript j as in x(j) denotes the j-th component
of x.

3.1 Noiseless Setting

In this section, we describe the UIC calculation algorithm
for the noiseless setting. The algorithm we propose in here
for replacing the OptimizeXAxis Algorithm is uniform par-
titioning (Algorithm 1). Let y(j)min = mini y

(j)
i and y

(j)
max =
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maxi y
(j)
i for every 1 ≤ j ≤ q and similarly x(j)min = mini x

(j)
i

and x
(j)
max = maxi x

(j)
i for every 1 ≤ j ≤ m. We then

partition both x and y axes such that all the axes corre-

sponding to x have length x(j)
max−x

(j)
min

`x
for every 1 ≤ j ≤ m

and similarly all the axes corresponding to y have length
y(j)max−y

(j)
min

`y
for every 1 ≤ j ≤ q. We call this new measure,

that is derived by replacing the OptimizeXAxis Algorithm
with Algorithm 1, by the uniform information coefficient
(UIC). The following proposition shows that when there
exists a functional association between two variables (with
finite gradient), the UIC will approach 1 as the sample size
grows. Without loss of generality, we do all the proofs in
the case that (x,y) ∈ [0, 1]m× [0, 1]q . These proofs could be
easily generalized to other cases where the support sets of x
and y have finite volume.

Algorithm 1 UniformPartition(`x, `y)
Inputs: Dataset D
Parameters: `x and `y are integers greater than 1
Output: Returns a score I∗ which is the value of I(P;Q)
where P and Q are distributions from uniform partitioning
of axes corresponding to X and Y.

1: P ← Uniform partition of X-axes by `x columns such
that for every 1 ≤ j ≤ m, X(j) partitions has length
x(j)
max−x

(j)
min

`x
2: Q ← Uniform partition of Y-axes by `y columns such

that for every 1 ≤ j ≤ q, Y(j) partitions has length
y(j)max−y

(j)
min

`y

3: I∗ = H(P)+H(Q)−H(P,Q)
log(min(`x,`y))

4: return I∗

Proposition 3.1. If D = {(xi,yi)}ni=1 where y = h(x), h :
Rm → Rq and 0 < |∇h(j)(x)| < ∞ for 1 ≤ j ≤ q, then
limn→∞UIC(D) = 1.

Proof. See Appendix A.

If x and y are independent, then according to the follow-
ing Proposition we have limn→∞UIC(D) = 0.

Proposition 3.2. If D = {(xi,yi)}ni=1 where x ⊥⊥ y, then
limn→∞UIC(D) = 0.

Proof. See Appendix B.

3.2 Noisy Setting
In this section we study the performance of the UIC in
the noisy setting. We first give a lower-bound on its value
when the two variables x and y have a noisy functional
association in which the noise is bounded. After that, we
study the case of unbounded noise.

For the bounded noise case, without loss of generality,
we assume that x(j) ∼ U [0, 1] for 1 ≤ j ≤ m and the
noise has a uniform distribution. Specifically, we assume
that sample points (xi,yi) have the form (xi, h(xi) + zε)

where z
(j)
ε ∼ U [−ε, ε] for 1 ≤ j ≤ q.

For every j where 1 ≤ j ≤ q, we define y
(j)
mid =

y(j)
max+y

(j)
min

2 . In Algorithm 1, we only divide the y-axis corre-
sponding to y(j) into two sections by drawing a hyperplane

δn
δn

y = h(x) + z φn Points
y

x(1)

x(2)

Fig. 3. Using k-nearest neighbors method to reduce the effect of noise
in noisy relationships. We replace each point with the average of its
neighbors in its δn-neighborhood.

at y
(j)
mid. If we call this partition of y by Q(j), we can

define the corresponding entropy and denote it by H(Q(j)).
Among all possibilities of partitioning axes corresponding
to y entries, we consider the one that gives us j∗ =
arg maxj H(Q(j)) (equivalently H(Q∗) = maxj H(Q(j)))
and accordingly partition axes corresponding to y into two
regions by drawing a hyperplane at y∗mid.

In addition, similar to Algorithm 1 we divide the axes
corresponding to x into `x columns each having the length
1
`x

(since x(j) ∼ U [0, 1] for 1 ≤ j ≤ m). Let D1 =

{(xi,yi)|y(j∗)
i < y∗mid} and D2 = {(xi,yi)|y(j∗)

i > y∗mid}.
Similar to the noiseless setting, we use P and Q to de-
note the partition of the axes corresponding to x and y,
respectively. Having this setting and notations in mind,
the following Corollary gives a simple lower-bound for the
UIC(D) in this case.

Corollary 3.3. Let r be the number of subspaces in P in which
there exists a sample point (x̂, ŷ) such that |ŷ(j∗) − y∗mid| ≤ ε.
Then, UIC(D) is lower-bounded by

|D| log(|D|)− |D1| log(|D1|)− |D2| log(|D2|)
|D|

− r

`mx
.

Proof. See Appendix C

The main issue with generalizing this lower-bounding
idea to other noise distributions is that noise values could be
unbounded. Hence, we use the idea of replacing a data point
with the average of its k-nearest neighbors. In other words, for
every xi in our dataset, we replace the noisy yi = h(xi)+zi

with ȳi =
∑ik
j=i1

h(xj)+zj

k , where {xi1 ,xi2 , . . . ,xik} are the
k-nearest neighbors to xi in the Euclidean space. This idea will
help us to reduce the effect of noise so as to come up with
a consistent version of the association detector. We study
this idea for the case that noise is drawn from a Gaussian
distribution N(0, σ2I).

For each sample point, we consider its δn-neighborhood
(we use subscript n to show the dependency on the size of
the dataset n). We replace each data point with the average
of sample points located in its δn-neighborhood (Figure 3).
The following lemma characterizes the fraction of sample
points in this neighborhood.

Lemma 3.4. Let x(t) be uniformly distributed for 1 ≤ t ≤ m,
i.e., x(t) ∼ U [0, 1] and z ∼ N(0, σ2I). If (xi,yi) denote the
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i-th data point in D where yi = h(xi) + zi and Nj = {xi ∈
D| (∀t, 1 ≤ t ≤ m) |x(t)

i − x
(t)
j | < δn}, then limn→∞

|Nj |
n =

(2δn)m.

Proof. See Appendix D.

Lemma 3.4 lets us estimate the number of data points in
δn-neighborhood of every sample as φn = n(2δn)m in the
asymptotic setting.

Assume that each of h(·)’s components is a Lipschitz
continuous function of order β, i.e., for all 1 ≤ t ≤ q we
have

|h(t)(v)− h(t)(w)| ≤ k‖v −w‖β2 ,

where k is a constant which depends on the function
h(·). If we estimate and replace the y-value of each noisy
sample point with the average of sample points in its δn-
neighborhood denoted by h̄(·), in the case of Gaussian noise
(z ∼ N(0, σ2I)) we can bound the estimation risk as

∆n =
1

n

n∑
i=1

E
[
‖h̄(xi)− h(xi)‖22

]
(5)

=
1

n

n∑
i=1

q∑
j=1

E
[
(h̄(j)(xi)− h(j)(xi))2

]

=
1

n

n∑
i=1

q∑
j=1

E

(∑sφn
ri=s1

(h(j)(xri) + z
(j)
ri )

φn
− h(j)(xi)

)2


=
1

n

n∑
i=1

q∑
j=1

E

(∑sφn
ri=s1

(h(j)(xri)− h(j)(xi)) + z
(j)
ri

φn

)2


=
1

n

n∑
i=1

q∑
j=1

E

(∑sφn
ri=s1

(h(j)(xri)− h(j)(xi))
φn

)2


+
1

n

n∑
i=1

q∑
j=1

E

(∑sφn
ri=s1

z
(j)
ri

φn

)2


≤ 1

n

n∑
i=1

q∑
j=1

E

(∑sφn
ri=s1

k‖xri − xi‖β2
φn

)2
+ q

σ2

φn

≤ qk2mβφ
2β
m
n

22βn
2β
m

+ q
σ2

φn
.

In order to minimize the estimation risk we can take deriva-
tive with respect to φn and set it to 0. Therefore, the φn
which minimizes the estimation risk is

φ∗n =
2β
m

+1

√
22βσ2

k2mβ
n
1− 1

2β
m

+1 . (6)

We use this φ∗n later to to bound the noise. The following
well-known lemma gives a tail bound for the maximum of
Gaussian variables, i.e., noise values in here.

Lemma 3.5. If z1, z2, . . . , zn are i.i.d. drawn from N(0, σ2I),

then P{max1≤i≤n |z(j)i | > t} ≤ 2ne
−t2
2σ2 for all 1 ≤ j ≤ q.

By using the k-nearest neighbors method, each z
(j)
i is

replaced by z̄
(j)
i which is the average of φn i.i.d. noise

values and hence its variance is reduced by the factor of
φn. This idea motivates the following corollary which lets
us to reduce the effect of noise.

Linear Parabolic Periodic

Cubic Sin (Diff. Freq.) Sin (Single Freq.) Chirp

Fig. 4. Functional associations we have used to test the MIC and UIC.
Corresponding results are available in Tables 1 and 2.

Corollary 3.6. By using the k-nearest neighbors method, z̄(j)i =∑sφn
k=s1

z
(j)
k

φn
, and as a result limn→∞max1≤i≤n |z̄(j)i | = 0 for

1 ≤ j ≤ q.

Proof. See Appendix E.

In the next section we show how the UIC works in
practice comparing to the MIC

4 EXPERIMENTAL RESULTS

In this section, we study the performance of our proposed
measure. We first focus on one-dimensional variables and
show how it works for functional and non-functional asso-
ciations. Next, we show results from experiments on one-
dimensional variables having noisy associations and com-
pare our proposed method with the MIC from statistical
power point of view. After that we move to multidimen-
sional variables and study the performance of our proposed
measure in the multidimensional setting. We refer interested
readers to [1] for a comprehensive comparison between the
MIC and other measures we are not reporting them here.

As we mentioned previously, since the computational
complexity of the dynamic programming step in the Opti-
mizeXAxis Algorithm of the MIC is considerably large, the
authors in [1] use a heuristic approximation by restricting
the number of clumps. The implementation of this method
is available in [1]. In all of our experimental results, we have
used this implementation for calculating the MIC values.
In addition to the MIC [1], we have also compared our
results with a recent modification of the MIC that is called
ChiMIC [8]. For the ChiMIC, we have used the MATLAB
implementation provided by the authors. Compared to the
conference version of this manuscript [24], for calculating
the UIC we have used an improved implementation of
Algorithm 1. The Python implementation of our work is
available online 2. However, when we compare against other
methods, we use a MATLAB implementation to have a fair
comparison between different computational complexities.

All values reported in this section are the average of 100
Monte-Carlo sample experiments. We should also mention
that entropy calculation in this section is based on the
probability assignment we described in (1).

2. https://github.com/alimousavi1988/UIC
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TABLE 1: Values and runtime (in sec) of MIC(D) and
UIC(D) for different functional associations in Figure 4. In
this set of experiments |D| = 200.

Association n = 200
MIC Time ChiMIC Time UIC Time

Linear 1 0.18 1 0.005 1 0.001
Parabolic 1 0.18 1 0.005 1 0.001
Periodic 1 0.25 1 0.01 0.92 0.001

Cubic 1 0.19 1 0.005 0.95 0.001
Sin (Diff. Freq.) 1 0.22 1 0.01 0.72 0.001

Sin (Single. Freq.) 1 0.39 1 0.01 0.95 0.001
Chirp 0.76 0.4 0.38 0.01 0.31 0.001

TABLE 2: Values and runtime (in sec) of MIC(D) and
UIC(D) for different functional associations in Figure 4. In
this set of experiments |D| = 5000.

Association n = 5000
MIC Time ChiMIC Time UIC Time

Linear 1 0.75 1 0.7 1 0.18
Parabolic 1 0.76 1 0.7 1 0.18
Periodic 1 9.00 1 0.7 0.998 0.18

Cubic 1 0.77 1 2.3 0.995 0.18
Sin (Diff. Freq.) 1 9.54 1 2.7 0.995 0.18

Sin (Single. Freq.) 1 9.46 1 2.8 0.998 0.18
Chirp 1 9.81 1 3.2 0.86 0.18

4.1 Noiseless Setting

Figure 4 shows functional associations between two one-
dimensional variables on which we have tested the per-
formance of the MIC, ChiMIC, and UIC. These associa-
tions are linear, quadratic, periodic, cubic, multi-frequency
sinusoidal with discontinuity (sin(4πx) for 0 ≤ x ≤ 0.5
and sin(8πx + π/2) for 0.5 ≤ x ≤ 1), single frequency
sinusoidal (sin(4πx) for 0 ≤ x ≤ 1), and chirp (sin(x1.6) for
0 ≤ x ≤ 4π). Table 1 summarizes results for the case that
there are 200 sample points. For all functional associations
except the chirp function MIC(D) = 1 and ChiMIC(D) = 1
in Table 1. However, UIC(D) = 1 only for linear and
parabolic associations.

The differences between the MIC and UIC are reasonable
for all cases except for the multi-frequency sinusoidal and
chirp associations. The main issue with these functions is
their high-frequency components. Due to the uniform parti-
tioning of the data grid, the UIC is able to fully capture high-
frequency components in functional associations when the
grid is fine enough. As a result, as we increase the number
of samples and have finer grids, the UIC value catches up
with the MIC value. As an example, in Table 2 that we
have increased the number of samples to 5000, the difference
between the UIC and MIC is almost zero for multi-frequency
sinusoidal and significantly smaller compared to Table 1
for the chirp function. In addition, for other functional
associations in Table 2, the UIC value is almost equal to the
MIC value because of the increased sample size and having
finer grids. If we compare the running time values in Tables
1 and 2 we can see that:

• There is a tradeoff between accuracy and time com-
plexity. The UIC is less computationally expensive
compared to the MIC and ChiMIC at the cost of not
maximizing the mutual information. This is mainly

Circle Sinusoidal Mixture

Two-Lines Random

Fig. 5. Non-functional associations we have used to test the MIC and
UIC. Corresponding results are available in Tables 3 and 4.

TABLE 3: Values and run time (in sec) for calculation of
MIC(D) and UIC(D) for different non-functional relation-
ships in Figure 5. For this set of experiments, |D| = 200.

Association n = 200
MIC Time ChiMIC Time UIC Time

Circle 0.63 0.21 0.6 0.01 0.23 0.001
Sinusoidal Mixture 0.58 0.22 0.55 0.01 0.49 0.001

Two Lines 0.83 0.21 0.82 0.01 0.68 0.001
Random 0.18 0.45 0.06 0.01 0.06 0.001

due to using uniform partitioning rather than dy-
namic programming. In addition, this is the main
reason why UIC’s outputs do not match the MIC’s
outputs in the small-sample regime.

• The running time of the UIC algorithm is indepen-
dent of the type of association while this is not the
case for the MIC and ChiMIC. The major reason for
this difference is that unlike the UIC, the construction
of the initial data grid in the MIC and ChiMIC
calculation depends on the type of association.

Tables 3 and 4 summarize results for non-functional
associations presented in Figure 5. As we mentioned before,
unlike the MIC that uses dynamic programming to strictly
maximizes the information coefficient (IC) for each grid
size (`x, `y), the UIC’s algorithm does not strictly maximize
the IC for each grid size (`x, `y) and instead uses uniform
partitioning. In general, this point results in having smaller
values for the UIC compared to the MIC. As a result, for
detecting associations that we expect the value of the MIC
to be significantly small (e.g., random samples or x ⊥⊥ y),
the UIC works better than the MIC since it outputs smaller
values than the MIC in general.

As an example, the ideal MIC and UIC for random
sample points is 0; however, as we can see MIC(D)=0.18
and UIC(D)=0.06 when n = 200 and MIC(D) = 0.07 and

TABLE 4: Values and run time (in sec) for calculation of
MIC(D) and UIC(D) for different non-functional relation-
ships in Figure 5. For this set of experiments, |D| = 5000.

Association n = 5000
MIC Time ChiMIC Time UIC Time

Circle 0.71 16.92 0.7 2.3 0.58 0.18
Sinusoidal Mixture 0.66 16.76 0.64 2.5 0.59 0.18

Two Lines 0.83 9.00 0.8 2.6 0.83 0.18
Random 0.07 19.95 0.01 2.8 0.01 0.18
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Fig. 6. Power of the MIC and UIC as a function of the level of noise
added, for eight different types of associations. We have used 500
Monte-Carlo samples to compute the power in each plot.

Circle Sinusoidal Mixture Two-Lines

Fig. 7. Noisy non-functional associations we have used to test the MIC
and UIC. Corresponding results are available in Tables 5 and 6.

UIC(D) = 0.01 when n = 5000. This issue is related to
one of the criticisms made about the MIC in the literature
[28]. One of the drawbacks of using the MIC is that as
a statistical test it has a lower power compared to other
measures of dependency such as distance correlation [28].
In other words, it gives more false positives in detecting as-
sociations. However, according to our experimental results
and Proposition 3.2 this issue is alleviated for the UIC.

Figure 6 compares the MIC, UMIC, and distance cor-
relation [29] from the statistical power point of view. As
shown in Figure 6, we have considered eight different types
of associations with different values of added noise. For
each association, we have considered 500 null datasets (i.e.,
datasets with x and y being independent) to estimate our
rejection regions for an alternative with level 0.05. Once
we had the rejection regions, we used another 200 sample
datasets to estimate the power for each association. As we
can see in Figure 6, the UIC has larger power than the MIC
in all cases except for the high-frequency sinusoidal associ-
ation. Furthermore, the UIC and distance correlation have
comparable performance. In five cases distance correlation
outperforms the UIC; while in the other three cases the UIC
outperforms distance correlation. Figure 6 basically shows
that by using the UIC rather than the MIC we will have
significantly fewer false positives in detecting associations

TABLE 5: Values and run time (in sec) for calculation of
MIC(D) and UIC(D) for different noisy non-functional rela-
tionships in Figure 5. For this set of experiments, |D| = 200.

Association n = 200
MIC Time ChiMIC Time UIC Time

Circle 0.54 0.23 0.53 0.015 0.22 0.001
Sinusoidal Mixture 0.57 0.22 0.54 0.015 0.47 0.001

Two Lines 0.80 0.22 0.75 0.012 0.65 0.001

TABLE 6: Values and run time (in sec) for the calculation
of MIC(D) and UIC(D) for different noisy non-functional
relationships in Figure 5. In these experiments, |D| = 5000.

Association n = 5000
MIC Time ChiMIC Time UIC Time

Circle 0.51 17.31 0.49 3.9 0.39 0.18
Sinusoidal Mixture 0.64 17.12 0.62 3.9 0.55 0.18

Two Lines 0.74 10.92 0.74 3.7 0.72 0.18

between variables of our datasets.
Tables 3 and 4 report running time of the MIC and UIC

calculation for non-functional associations as well. In the
case of non-functional associations, we have more clumps
in the initial grid of sample points for the calculation
of the MIC. Hence, if we compare Table 4 with Table 2
we can see that compared to functional associations, it is
computationally more expensive to compute the MIC for
nonfunctional associations. On the other hand and as we
previously mentioned, if we relax the dynamic program-
ming step with uniform partitioning in calculating the IC,
we come up with the UIC that approximates the MIC but at
the same time is computationally more efficient as a result
of this trade-off. Since the UIC is dealing with uniform
partitioning of the grid of sample points instead of applying
dynamic programming, the type of an association between
two variables does not have an impact on its running time.

4.2 Noisy Setting
Tables 5 and 6 summarize results for noisy non-functional
associations presented in Figure 7. Associations in Figure 7
are similar to the ones in Figure 5 except for the fact that
we have added noise drawn from the uniform distribution
U [−0.05, 0.05] to their sample points. Comparing Table 5
with Table 3 and Table 6 with Table 4, we can see that
the range of decrease for different associations is almost

TABLE 7: UIC(D) for different functional and non-
functional associations denoted in Figure 8. In these experi-
ments, |D| = 5000 and |D| = 105.

Association UIC
n = 5000 n = 105

Linear 0.89 0.95
Parabolic 0.83 0.87

Cubic 0.88 0.95
Sinusoidal 0.78 0.91

Multi-Frequency
Sinusoidal 0.43 0.76

Multi-Line 0.68 0.86
Independent 0.02 0

Spherical 0.44 0.54
Two-Plates 0.49 0.58

Two-Sinusoidal 0.18 0.36



8

Fig. 8. Different types of multidimensional associations we have used to
test the UIC. Corresponding results are available in Tables 7 and 8.

TABLE 8: UIC(D), MIC(D), and ChiMIC(D) and their run-
time (in sec) for different functional and non-functional
associations denoted in Figure 8. In these experiments,
|D| = 105.

Association
x ∈ R2, y ∈ R

n = 105

UIC Time MIC Time ChiMIC Time
Linear 0.95 164 0.37 7796 0.36 6972

Parabolic 0.87 165 0.38 7722 0.37 6808
Cubic 0.95 164 0.29 7735 0.29 6717

Sinusoidal 0.91 165 0.01 9476 0 2316
Multi-Frequency Sinusoidal 0.76 165 0.02 9372 0.01 5714

Multi-Line 0.86 165 0.28 7812 0.28 6840
Independent 0 164 0.01 9466 0 3222

Spherical 0.54 165 0.12 9034 0.12 7514
Two-Plates 0.58 165 0.07 9344 0.07 7580

Two-Sinusoidal 0.36 165 0.11 9078 0.1 7528

the same for both MIC and UIC. Tables 5 and 6 show
the running time for calculation of the MIC, ChiMIC, and
UIC for noisy associations presented in Figure 7 as well.
Since adding noise to sample points increases the number
of clumps in the initial grid of sample points, we observe
that compared to noiseless non-functional associations (as
reported in Table 4), it takes more time to compute the
MIC and ChiMIC for noisy non-functional associations (as
reported in Table 6). However, since the UIC calculation
algorithm performs uniform partitioning on sample points,
its computational complexity is robust to adding noise to
associations. We should note that as we can see in Tables 3
and 5, adding noise does not have a significant impact on
running time of the MIC and ChiMIC calculation algorithm
when the number of sample points is rather small.

4.3 Multidimensional Variables

We now move to experimental results for multidimen-
sional variables. Figure 8 shows multidimensional associ-
ations on which we have tested the performance of the

UIC. In all the cases x ∈ R2 is a two-dimensional vari-
able and y ∈ R is a one-dimensional variable. Extending
experimental results to higher dimensions is straightfor-
ward and we have chosen this setting for the sake of
visualization. Figure 8 contains functional associations (lin-
ear, parabolic, cubic, sinusoidal, multi-frequency sinusoidal,
periodic multi-line), non-functional associations (spherical,
two-plates, two-sinusoidal), and independent variables.

Table 7 reports the UIC value corresponding to different
associations in Figure 8 for two sets of experiments where
|D| = 5000 and |D| = 105. As we can see in Table 7, the
value of the UIC for functional associations approaches to 1
as we increase the sample size. Among the functional asso-
ciations of Figure 8, the UIC shows the weakest association
for the multi-frequency sinusoidal relationship. This corre-
sponds to the same issue we previously mentioned about
the one-dimensional multi-frequency sinusoidal function in
Figure 4. As we increase the sample size we can observe a
rapid growth in the value of the UIC for the multi-frequency
sinusoidal function (Table 7). For the case of independent
variables, the UIC is equal to 0.02 for |D| = 5000 and 0
for |D| = 105. In other words, as we increase the sample
size, the UIC shows perfect independence. For other non-
functional associations the UIC is equal to a value that
shows neither perfect independence nor a perfect functional
association, as reported in Table 7.

As we mentioned previously, the MIC and ChiMIC are
exclusively designed for one-dimensional variables. If we
want to use them for a multidimensional setting, one way
is to compare all possible pairs of coordinates between the
two variables. In other words, if we need to check the
existence of any association between x = (x1, . . . , xm) and
y = (y1, . . . , yq), we should run the MIC and ChiMIC
between all xis (1 ≤ i ≤ m) and yjs (1 ≤ j ≤ q). The
problem with this approach is that it needs mq times of
running the original MIC algorithm and hence, could be
computationally expensive. On the other hand, the UIC
calculation algorithm could be easily generalized for a mul-
tidimensional setting. Therefore, if x = (x1, . . . , xm) and
y = (y1, . . . , yq), we do not need to check the UIC between
each xi (1 ≤ i ≤ m) and yj (1 ≤ j ≤ q) separately and can
instead directly calculate the UIC between x and y.

Table 8 shows examples of this setting on the associations
mentioned in Figure 8. If we use the UIC, it gives us a
computationally efficient response which takes almost 165
seconds independent of the type of association. However,
for the MIC and ChiMIC we need to first measure the
association between (x1, y) and (x2, y) separately since they
do not support the multidimensional setting. Once we have
these two separate measures we can combine them (e.g.,
by taking an average) to come up with a measure which
shows how associated y is to x = (x1, x2). In our examples,
since both x1 and x2 equally impact y, we have considered
a simple averaging of MIC(x1, y) and MIC(x2, y) and re-
ported the numbers in Table 8. By comparing the results in
Table 8, we can observe two major points. First, the UIC
is significantly more efficient compared to the MIC and
ChiMIC in the multidimensional setting. Second, the MIC
and ChiMIC are not perfect measures for the multidimen-
sional setting. Since y is affected by both x1 and x2, MIC and
ChiMIC cannot recognize the perfect relationship between
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TABLE 9: UIC(D) and its runtime (in sec) for several associations where both x and y are multidimensional. The UIC value
converges to 1 for functional associations as the sample size increases.

Association
x ∈ R5, y ∈ R5

n = 105 n = 106 n = 107 n = 108

UIC value runtime UIC value runtime UIC value runtime UIC value runtime
Independent

x = (x1, x2, x3, x4, x5), xi ∼ U [0, 1]
y = (y1, y2, y3, y4, y5), yi ∼ U [0, 1]

0.001 0.2 0.001 4.8 0.001 134.5 0.001 3240.8

Linear
x = (x1, x2, x3, x4, x5), xi ∼ U [0, 1]

y = (2x1, 2x2, 2x3, 2x4, 2x5)
1 0.2 1 4.8 1 128.9 1 3268.5

Cubic
x = (x1, x2, x3, x4, x5), xi ∼ U [0, 1]

y = (x3
1, x

3
2, x

3
3, x

3
4, x

3
5)

0.25 0.2 0.42 4.9 0.65 131.2 1 3296.1

Mixed
x = (x1, x2, x3, x4, x5), xi ∼ U [0, 1]

y = (x1, x
2
2, x

3
3, sin(x4), cos(x5))

0.55 0.2 0.65 4.8 0.85 130.9 0.96 3306.2
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Fig. 9. Life expectancy vs. GDP per capita and government health
expenditure for developed countries in 2010-2015. Both plots show a
positive correlation meaning that as GDP per capita and health expen-
diture grow, life expectancy increases as well.
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Fig. 10. Red circles show developed countries having the largest life ex-
pectancy but not the largest GDP per capita. Instead their governments’
health expenditure are among the largest ones.

x = (x1, x2) and y by simply considering the relationship
between (y, x1) and (y, x2).

Finally, we study the case where both x and y are
multidimensional. Table 9 shows the UIC values for several
associations in which x ∈ R5 and y ∈ R5. In Table 9
we have mentioned the details of each association since
we are not able to fully visualize them in 3D. In partic-
ular, we have considered several functional associations
(linear, cubic, mixed) and independent variables. In these
experiments, we change |D| from 105 to 108. According
to Table 9, as we increase the sample size the UIC values
of the cubic and mixed associations converge to 1. For the
linear relationship, the UIC value is equal to 1 constantly. In
addition, for independent variables the UIC value is almost
0 constantly and independent of the sample size.

4.4 Real-World Dataset
We consider a public dataset from World Health Organi-
zation (WHO) 3 which contains potential factors affecting

3. https://www.kaggle.com/kumarajarshi/life-expectancy-who

TABLE 10: Association between the life expectancy and GDP
and health expenditure. Unlike the UIC, MIC and ChiMIC
weigh both associations almost equally important.

Life Expectancy vs. UIC MIC ChiMIC
GDP per Capita 0.26 0.54 0.39

Health Expenditure 0.53 0.55 0.40

the life expectancy. From this dataset, we focus on the case
of developed countries over five years (2010-2015)4. We are
interested in observing the association in two cases: first,
between the life expectancy and GDP per capita; second,
between the life expectancy and government expenditure
on health as a percentage of total government expenditure.

Figure 9 shows 120 data points in each plot and Table 10
shows the MIC, ChiMIC, and UIC values for these two plots.
The MIC and ChiMIC values are almost the same for both
plots. However, the UIC value for the relationship between
the life expectancy and health expenditure is significantly
larger than the one between the life expectancy and GDP
per capita. Therefore, compared to the UIC, the MIC and
ChiMIC are treating these associations differently. The MIC
and ChiMIC describe both associations as almost equally
strong while the UIC describes the association between the
life expectancy and health expenditure as the stronger one.

While there is a positive correlation between the GDP
per capita and life expectancy, there are several developed
countries that have the largest life expectancies while their
GDP per capita are not among the largest ones. These
countries are determined by red circles in the right plot of
Figure 10. If we observe the government health expenditure
of these countries in the left plot of Figure 10, we notice
that their governments health expenditure are among the
largest ones as well. This shows that in the WHO dataset
there exist developed countries that their life expectancies
and health expenditures are among the largest ones but their
GDP per capita are not. Therefore, for this dataset one can
expect a stronger association between the life expectancy
and government health expenditure compared to the GDP
per capita. While the UIC results in Table 10 confirm this
observation, the MIC and ChiMIC on the other hand, weigh
both associations equally. This is another example that
shows how our measure could outperform the MIC.

4. WHO Dataset.csv in https://github.com/alimousavi1988/UIC
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5 CONCLUSIONS

In this paper we introduced the UIC that is a novel measure
of association between two multidimensional variables and
is able to detect both linear and non-linear associations.
While our proposed measure is inspired by the MIC [1],
it is different in several ways. The MIC uses dynamic
programming to find an optimal grid of data while our ap-
proach uses uniform partitioning. This makes our approach
computationally more efficient and robust to the type of
associations at the cost of not strictly maximizing the mutual
information as done by the MIC. Furthermore, we showed
that uniform partitioning allows us to simply extend our
approach to multidimensional variables. For future work,
we plan to study learning-based approaches for detecting
associations. In particular, we leave studying neural mutual
information estimators [30] and their out of distribution
generalization [31] as avenues for the future research.

REFERENCES

[1] D. Reshef, Y. Reshef, H. Finucane, S. Grossman, G. McVean,
P. Turnbaugh, E. Lander, M. Mitzenmacher, and P. Sabeti, “De-
tecting novel associations in large data sets,” Science, vol. 334, no.
6062, pp. 1518–1524, 2011.

[2] H. Cramer, Mathematical Methods of Statistics. Princeton Univ Pr,
1999, vol. 9.

[3] A. Kolmogorov, “Grundbegriffe der wahrscheinlichkeitsrech-
nung,” 1933.
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and mutual information based on generalized nearest-neighbor
graphs,” in Proc. Adv. in Neural Processing Systems (NIPS), 2010,
pp. 1849–1857.

[18] S. Gao, G. V. Steeg, and A. Galstyan, “Efficient estimation of
mutual information for strongly dependent variables,” in Proc. Int.
Conf. Art. Intell. Stat. (AISTATS), 2015, pp. 277–286.

[19] K. R. Moon, K. Sricharan, and A. O. Hero, “Ensemble estimation
of mutual information,” arXiv preprint arXiv:1701.08083, 2017.

[20] M. Noshad, K. R. Moon, S. Yasaei Sekeh, and A. O. Hero, “Direct
estimation of information divergence using nearest neighbor ra-
tios,” in Proc. Int. Symposium Info. Theory (ISIT), 2017, pp. 903–907.

[21] M. Noshad, Y. Zeng, and A. O. Hero, “Scalable mutual information
estimation using dependence graphs,” in Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Processing (ICASSP),, 2019, pp. 2962–
2966.

[22] S. Yasaei Sekeh and A. O. Hero, “Geometric estimation of multi-
variate dependency,” arXiv preprint arXiv:1905.08594, 2019.

[23] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[24] A. Mousavi and R. G. Baraniuk, “An information-theoretic mea-
sure of dependency among variables in large datasets,” in Proc.
Allerton Conf. Communication, Control, and Computing. IEEE, 2015,
pp. 650–657.

[25] S. Li, “The art of clustering bandits,” Ph.D. dissertation, Università
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APPENDIX A
PROOF OF PROPOSITION 3.1
Proof. For an α ∈ Rq , we denote by gh(α) the sub-level
function of function h(·), i.e.,

gh(α) = λ({x : h(x) ≤ α}), (7)

where λ(T) denotes the fraction of sample points in the set
T. Consequently

gh(α) = Fy(α) = P(y ≤ α) = P(h(x) ≤ α), (8)

where Fy(·) denotes the cumulative distribution function
(CDF) and P(·) denotes the probability function. Using this
notation and assuming that we uniformly partition all axes
corresponding to y by `y rows, we can write the entropy of
resulting partition Q as

H(Q) (9)

= −
`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

P(Q = (i1, i2, . . . , iq))

× log(P(Q = (i1, i2, . . . , iq)))

= −
`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

P
(
i1
`y
≤ y(1) < i1 + 1

`y
, . . . ,

iq
`y
≤ y(q) < iq + 1

`y

)
× log

(
P
(
i1
`y
≤ y(1) < i1 + 1

`y
, . . . ,

iq
`y
≤ y(q) < iq + 1

`y

))
(a)
= −

`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

1

`qy

∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq

× log

(
1

`qy

∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq

)
where (a) holds according to the mean value theorem and
ij
`y
≤ αij <

ij+1
`y

for all 1 ≤ j ≤ q, respectively. If without
loss of generality we assume that min(`x, `y) = `y , then we
have

H(Q)

log(`qy)
(10)

= −
`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

1

`qy log (`qy)

∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq

× log

(
∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq

)

+

`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

1

`qy

∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq
. (11)

Therefore, in the asymptotic setting where n → ∞ (and
accordingly `y →∞), we can write

lim
`y→∞

H(Q)

log(`qy)

= lim
`y→∞

`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

1

`qy

∂qgh(αi1 , . . . , αiq )

∂αi1 . . . ∂αiq

= 1, (12)

since lim`y→∞
∑`y−1
i1=0

∑`y−1
i2=0 . . .

∑`y−1
iq=0

1
`qy

∂qgh(αi1 ,...,αiq )

∂αi1 ...∂αiq
is

the Riemann integral of function gh(·). Since h(j) : Rm → R
and |∇h(j)(x)| < ∞, for every 1 ≤ u ≤ m there exists a
c <∞ such that we have∣∣∣∣h(j) (x +

eu
`y

)
− h(j) (x)

∣∣∣∣ ≤ c

`y
, (13)

where eu ∈ Rm is the unit vector in the direction of u-axis.
Equation (13) states that for any particular column of the
x-axes partition, the curve of the function passes through at
most c + 1 cells of that column. We use this fact in upper-
bounding H(Q|P). Similar to (9), we can write

H(Q|P = k) (14)

= −
`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

P (Q = (i1, . . . , iq)|P = k)

× log (P (Q = (i1, . . . , iq)|P = k))

= −
`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

P
(
i1
`y
≤ y(1) < i1 + 1

`y
, . . . ,

iq
`y
≤ y(q) < iq + 1

`y
|P = k

)
log

(
P
(
i1
`y
≤ y(1) < i1 + 1

`y
, . . . ,

iq
`y
≤ y(q) < iq + 1

`y
|P = k

))
(a)
= −

`y−1∑
i1=0

`y−1∑
i2=0

. . .

`y−1∑
iq=0

1

`qy
fy|x(αi1 , . . . , αiq |P = k)

log

(
1

`qy
fy|x(αi1 , . . . , αiq |P = k)

)
,

(15)

where in (a) fy|x(.|.) is the conditional probability distri-
bution function (PDF) of y given x. If we define k∗ =
arg maxkH(Q|P = k), then H(Q|P) =

∑
k P(P =

k)H(Q|P = k) ≤ H(Q|P = k∗). Therefore, given (13),
we can simplify (14) and write

H(Q|P) (16)

≤ −
c1+c∑
i1=c1

c2+c∑
i2=c2

. . .

cq+c∑
iq=cq

1

`qy
fy|x(αi1 , . . . , αiq |P = k∗)

log
(
fy|x(αi1 , . . . , αiq |P = k∗)

)
+

c1+c∑
i1=c1

c2+c∑
i2=c2

. . .

cq+c∑
iq=cq

1

`qy
fy|x(αi1 , . . . , αiq |P = k∗) log(`qy).

Accordingly, in the asymptotic setting where n → ∞
(and accordingly `y →∞), we can write

lim
`y→∞

H(Q|P)

log(`qy)
(17)

≤ lim
`y→∞

c1+c∑
i1=c1

c2+c∑
i2=c2

. . .

cq+c∑
iq=cq

1

`qy
fy|x(αi1 , . . . , αiq |P = k∗)

= 0,
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where the last equality holds since 1
`y
→ 0 but c <∞. As a

result

lim
`y→∞

UIC(D) =
I(P;Q)

log(min{`mx , `
q
y})

(18)

=
H(Q)−H(Q|P)

log(min{`mx , `
q
y})

= 1.

APPENDIX B
PROOF OF PROPOSITION 3.2
Proof. Similar to the proof of Proposition 3.1, we uniformly
partition all axes corresponding to y by `y rows, and all axes
corresponding to x by `x rows. Let nij denote the number of
datapoints that fall in the cell where x = i and y = j. We can
write nij =

∑n
k=1 dk, where dk = 1 with probability P(x =

i,y = j) and dk = 0 with probability 1 − P(x = i,y = j).
Therefore, since E[nij] = npij where pij = P(x = i,y = j),
according to the Chernoff bound we can write

p
(∣∣∣nij
n
− pij

∣∣∣ ≥ δpij) ≤ 2e
−δ2npij

3 , (19)

for all 0 < δ < 1. If we define εij =
nij
n −pij
pij

, we can rewrite
(19) as

p (|εij| ≥ δ) ≤ 2e
−δ2npij

3 , (20)

for all 0 < δ < 1. If we let δ = 1√
pij log(n)

, (20) would turn

into

p

(
|εij| ≥

1√
pij log(n)

)
≤ 2e

−n
3 log(n) . (21)

Therefore, if we apply the union bound over different is and
different js, we have

p

(
|εij| ≥

1√
pij log(n)

)
≤ 2`mx `

q
ye

−n
3 log(n) ∀i, j. (22)

Since we bound the size of partitions similar to [1], we have
`mx `

q
y = O(n1−ε) and hence εij → 0, in probability.
We can write the mutual information as the Kullback–

Leibler (KL) divergence of the product of marginal distribu-
tions P(Q)P(P) from the joint distribution P(Q,P).

I(P;Q) = DKL(P(Q,P),P(Q)P(P)) (23)

=
∑
i,j

nij
n

log

(
nij

n
ni

n ×
nj

n

)
=
∑
i,j

pij(1 + εij) log(1 + εij)− pij(1 + εij) log(1 + εi)

− pij(1 + εij) log(1 + εj)

(a)
=
∑
i,j

pij(1 + εij)(εij −O(ε2ij))− pij(1 + εij)(εi −O(ε2i ))

− pij(1 + εij)(εj −O(ε2j )),

where (a) holds because of the Taylor series expansion of
log(1 + εij). Since εij → 0 in probability, it is easy to show
that ε2ij, εi =

∑
j εij, and εj =

∑
i εij also converge to 0 in

probability and hence, I(P;Q)→ 0.

APPENDIX C
PROOF OF COROLLARY 3.3
Proof. The proof is similar to the univariate case we pre-
sented in [24] and hence, here we present a proof sketch.
Since I(P,Q) = H(Q) − H(Q|P), we need to have an
upper-bound on H(Q|P) in order to determine a lower-
bound on I(P,Q). According to the entropy definition, we
can write

H(Q) =
|D| log(|D|)− |D1| log(|D1|)− |D2| log(|D2|)

|D|
.

(24)

In addition, as we have shown in the univariate case [24],
we can upper-bound the H(Q|P) as the following

H(Q|P) ≤ r

`mx
(25)

The lower-bound is then derived by combining (24) and
(25).

APPENDIX D
PROOF OF LEMMA 3.4
Proof. Let I(·) denote the indicator function. We can charac-
terize the fraction of sample points in Nj as the following

ε(j)n =
|Nj |
n

(26)

=
1

n

N∑
i=1

I(|x(1)
i − x

(1)
j | ≤ δn, . . . , |x

(m)
i − x

(m)
j | ≤ δn).

Therefore we have

E[ε(j)n ] = (2δn)m.

Using the Hoeffding inequality, we can write

P(|ε(j)n − E[ε(j)n ]| ≥ t) ≤ 2e−2t
2n. (27)

If we let t = 1
logn , then limn→∞(ε

(j)
n ) = (2δn)m.

APPENDIX E
PROOF OF COROLLARY 3.6
Proof. According to the Lemma 3.5, we can write

P{max1≤i≤n |z̄(j)i | > t} ≤ 2ne
−t2φn
2σ2 . The result then follows

from letting t = 1
logn and φn = φ∗n which was derived in

(6).


